

DPP-4

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/83

https://youtu.be/BNyv41f8QNA

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/21
Q 1. The spherical shape of rain-drop is due to
(a) Density of the liquid
(b) Surface tension
(c) Atmospheric pressure
(d) Gravity

Q 2. Soap helps in cleaning clothes, because
(a) It attracts the dirt particles
(b) It decreases the surface tension of water
(c) It increases the cohesive force between water molecules
(d) It increases the angle of contract

Q 3. A rectangular glass plate of dimensions $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ is placed flat on the surface of water. Find the downward force on the plate due to surface tension. [Given surface tension of water $=0.073 \mathrm{~N} / \mathrm{m}]$
(a) 1.314 N
(b) 0.04132 N
(c) 0.3114 N
(d) 0.01314 N

Q 4. The length of a needle floating on water is 2.5 cm . The minimum force in addition to its weight) needed to lift the needle above the surface of water will be (surface tension of water is $0.072 \mathrm{~N} / \mathrm{m}$)
(a) $3.6 \times 10^{-3} \mathrm{~N}$
(b) $10^{-2} \mathrm{~N}$
(c) $9 \times 10^{-4} \mathrm{~N}$
(d) $6 \times 10^{-4} \mathrm{~N}$

Q 5. A thread is tied slightly loose to a wire frame as in figure and the frame is dipped into a soap solution and taken out. The frame is completely covered with the film. When the portion A is punctured with a pin, the thread :

(a) Becomes concave towards A
(b) Becomes convex towards A
(c) Either (a) or (b) depending on the size of A with respect to B
(d) Remains in the initial position

Q 6. The force required to take away a flat circular plate of radius 2 cm from the surface of water, will be (the surface tension of water is 70 dyne/cm)
(a) 280π dyne
(b) 250π dyne
(c) 140π dyne
(d) 210π dyne

Q 7. $\quad \mathrm{P}$ is the excess pressure inside a water drop. If that drop is divided into 8 identical droplets, excess pressure inside smaller droplet is
(a) P
(b) $\mathrm{P} / 2$
(c) 2 P
(d) $\mathrm{P} / 8$

Q 8. Surface tension of water is $0.072 \mathrm{~N} / \mathrm{m}$. The excess pressure inside a water drop of diameter 1.2 mm is :-
(a) $240 \mathrm{~N} / \mathrm{m}^{2}$
(b) $24 \mathrm{~N} / m^{2}$
(c) $0.06 \mathrm{~N} / \mathrm{m}^{2}$
(d) $60 \mathrm{~N} / \mathrm{m}^{2}$

Q 9. The surface tension of soap solution is $0.05 \mathrm{~N} / \mathrm{m}$ if the diameter of the soap bubble is 4 cm . The excess pressure inside the soap bubble over that of outside is (in pascal)
(a) 10
(b) 1
(c) 0.1
(d) 0.25

Q 10. The surface energy of a liquid dropis E. It is sprayed into 1000 equal droplets. Then its surface energy becomes
(a) 1000 E
(b) 100 E
(c) 10 E
(d) E

Q 11. A water drop of radius $10^{-2} \mathrm{~m}$ is broken into 1000 equal droplets. Calculate the gain in surface energy. Surface tension of water is $0.075 \mathrm{~N} / \mathrm{m}$
(a) $8.5 \times 10^{-4} \mathrm{~J}$
(b) $3.5 \times 10^{-3} \mathrm{~J}$
(c) $2.5 \times 10^{-4} \mathrm{~J}$
(d) $5.8 \times 10^{-3} \mathrm{~J}$

Q 12. A vessel, whose bottom has round holes with diameter of 0.1 mm , is filled with water. The maximum height to which the water can be filled without leakage is (S.T. of water $=75$ dyne $/ \mathrm{cm}, \mathrm{g}=1000 \mathrm{~cm} / \mathrm{s}^{2}$)
(a) 100 cm
(b) 75 cm
(c) 50 cm
(d) 30 cm

Answer Key

Q. 1 b	Q. 2 b	Q. 3 d	Q. 4 a	Q. 5 a
Q. 6 a	Q. 7 c	Q. 8 a	Q. 9 a	Q. 10 c
Q. 11 a	Q. 12 d			

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

NEET \& JEE Main Physics DPP - Written Solution

DPP- 4 Fluid : Surface Tension, Excess Pressure, Surface Energy
By Physicsaholics Team

Solution: 1

The surface of water tends to contract which is known as surface tension. In case of water droplets, the surface tension attains minimum value when its shape is spherical. So water droplets are sphericah in shape.

Ans. b

Solution: 2
Soaps decreases the surface tension of waterse as to increase wetting ability of water which helps in cleaning clothes.

Solution: 3

$$
\begin{aligned}
& F=2(l+b) \times T \\
& F=2(0.05+0.04) \times 0.073 \\
& F=2 \times 0.09 \times 0.073 \\
& F=0.01314
\end{aligned}
$$

Ans. d

Solution: 4

$$
\begin{aligned}
& F_{\text {cnt }}=F_{T}+m g \\
& F_{\text {ent }}=(21 * T)+m g \\
& F_{\text {ent }}-m g=\left(2 \times 2.5 \times 10^{-2} \times 0.072\right) \\
& F_{\text {ent }}-m g=0.0036
\end{aligned}
$$

$F_{\text {sut }}=$ ront-ming

Ans. a

Solution: 5

The potential energy of the surface tension force is given by the formula.
$\mathrm{U}=\mathrm{SA}$ where A is the area of the film. Since after-puncturing, the film will try to minimize its potential energy and hence the surface area, the thread will become concave towards A.

Ans. a

Solution: 6

$$
\begin{aligned}
& F_{\text {req }}=(2 \lambda R) T \\
& F_{\text {req }}=(2 \pi \times 2) \times(70) \\
& F_{\text {req }}=280 R \text { dine }
\end{aligned}
$$

Ans. a

Solution: 7

Solution: 8

Ans. a

Solution: 9

$$
\begin{aligned}
& T=0.05 \mathrm{~N} / \mathrm{m} \\
& d=4 \mathrm{~cm} \\
& r=2 \mathrm{~cm} ; 0.02 \mathrm{~m}
\end{aligned}
$$

for soap bubble:

Ans. a

Solution: 10

Ans. c

Solution: 11

$$
\begin{aligned}
& \frac{4}{3} \pi r_{1}^{3}=1000\left(\frac{1}{3} \lambda r_{2}^{3}\right) \\
& r_{1}=10 r_{2} \\
& 10^{2}=10 r_{2} \\
& r_{2}=10^{3} m \\
& E_{1}=\left(4 \pi r_{1}^{2}\right) \times \pi \\
&=(4 n \times T)\left(10^{2}\right)^{2} \\
& E_{2}=
\end{aligned}
$$

gain in Energy.

$$
\Delta E=E_{2}-E_{1}=[4 n \times T] \times\left[\left(10^{-3}\right)^{2} \times 1000-\left(10^{-2}\right)^{2}\right] \text { Ans. a }
$$

Solution: 12

$$
h=\frac{2 T \cos \theta}{\rho \gamma g}
$$

$$
d=0.1 \mathrm{~mm}
$$

$$
r=0.05 \mathrm{myy}=0.005 \mathrm{~cm}
$$

for max height ; (cop)rays $=1$

$$
h=\frac{2 T}{3 \gamma Q}
$$

$$
h=
$$

$$
t^{\prime}=30 \mathrm{~cm} \text { Ass }
$$

Ans. d

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/83

Video Solution on YouTube:-
https://youtu.be/BNyv41f8QNA

Written Solution on Website:-

Chalo Nikis

